WEB LEXIKON: Ein Blick zurück
Hauptseite | Aktueller Wikipedia-Artikel

Hochgeschwindigkeitsverkehr



Als Eisenbahn-Hochgeschwindigkeitsverkehr bezeichnet man das fahrplanmmäßige Verkehren von Zügen mit Spitzengeschwindigkeiten von deutlich über 200 km/h. Als Schwelle wird gerne eine Geschwindigkeit von 220 oder 230 km/h angesetzt.

Table of contents
1 Grundlagen
2 Geschichte
3 Zukunft

Grundlagen

Um Hochgeschwindigkeitsverkehr zu ermöglichen, müssen nicht bloß eine, sondern alle Komponenten des Systems Eisenbahn zusammen angepasst werden. Das heißt: Es wird ein Hochgeschwindigkeitszug benötigt, der auf einer Schnellfahrstrecke fährt und dabei (üblicherweise) von einem linienförmigen Zugbeeinflussungssystemsystem gedeckt wird.

Hochgeschwindigkeitszüge

Das Rollmaterial für den Hochgeschwindigkeitsverkehr wird generell elektrisch betrieben. Diesel- oder Gasturbinentriebfahrzeuge wurden des öfteren erprobt, sind in Zukunft vielleicht im Kommen (JetTrain), bilden aber die große Ausnahme.

Um hohe Geschwindigkeiten zu erreichen, wird eine große Leistung (nahe 10.000 kW) installiert und der Zug gleichzeitig so leicht wie möglich gebaut (Leichtbau). Ersteres ist durch heutige Leistungselektronik und Elektrik (Frequenzumrichter, Drehstromasynchronmotoren) leichter geworden als früher, letzteres erfordert Materialien, Bauweisen und Verfahren aus der Luft- und Raumfahrtindustrie. (Beispiel: Der "Rumpf" eines ICE ist wie der eines Flugzeugs ein stranggepresstes Leichtmetall-Rohrprofil mit bündig eingeklebten Fensterscheiben.)

Die für ihre Masse äußerst stark motorisierten Züge sind so auch in der Lage, wesentlich größere Steigungen zu überwinden als herkömmliche Züge. Reine Schnellfahrstrecken können so freier trassiert werden, was Baukosten einzusparen hilft. Allerdings muss die Leistung auch geliefert und selbst bei höchsten Geschwindigkeiten sicher übertragen werden, was neben speziellen Schnellfahr-Oberleitungen (siehe unten) auch Schnellfahr-Stromabnehmer bedeutet, die aerodynamisch und möglichst leicht konstruiert sind. Deutsche ICE entnehmen ihren Fahrstrom über zwei Stromabnehmer (an jedem Ende des Zuges einer), was Vorkehrungen erfordert, damit die Fahrdrahtschwingungen, die vom vorderen Bügel ausgehen, den hinteren nicht stören.

Um die Steigfähigkeit zu gewährleisten und die hohen Leistungen überhaupt auf die Schiene zu bringen, werden meist mehr angetriebene Achsen vorgesehen als die vier eines herkömmlichen elektrischen Zuges (Ausnahme ist z.B. der ICE 2, wenn die Halbzüge geteilt sind). Man baut also einen Triebkopfzug, der an beiden Enden je 4-6 angetriebene Achsen hat, oder gleich einen Triebzug mit Allachsantrieb in allen (Shinkansen) oder in jedem zweiten (ICE 3) Wagen.

Gute Aerodynamik spielt eine weitere wichtige Rolle; die Außenhaut der Züge wird möglichst glatt, die Wagenübergänge möglichst fugenlos vorgesehen. Die Zugenden werden im Windkanal entworfen, wobei Design und Marketing eine wichtige Rolle spielen, da Hochgeschwindigkeitszüge ausnahmslos als Aushängeschild des jeweiligen Betreiberkonzerns gelten.

Fast am wichtigsten jedoch ist das Laufwerk. Es gibt Hochgeschwindigkeitszüge mit Jacobs-Drehgestellen oder herkömmlichen Drehgestellen; beide Bauweisen haben Vor- und Nachteile. In jedem Fall muss das Laufwerk geringe ungefederte Massen aufweisen und sehr gut abgefedert sein. Heute wird fast ausnahmslos Luftfederung eingesetzt, auch kommen Schlingerdämpfer zum Einsatz.

Um den Sicherheitsanforderungen zu genügen, sind schlussendlich auch exzellente Bremsen erforderlich. Elektrisches Bremsen (mit Widerständen und/oder regenerativ) an den Antriebsachsen wird ergänzt durch Scheibenbremsen, Magnetschienenbremsen und in letzter Zeit auch Wirbelstrombremsen.

All dies zusammen ermöglicht Hochgeschwindigkeitszügen heute Höchstgeschwindigkeiten weit jenseits aller Fahrpläne (über 400 km/h).

Schnellfahrstrecken

An die entsprechenden Hochgeschwindigkeitsstrecken werden ebenfalls hohe Anforderungen gestellt. Die Trassierung muss weite Kurvenradien vorsehen, gegebenenfalls mit kühnen Überhöhungen; der Oberbau muss den Dauer- und Spitzenbelastungen sowie den Vibrationen dabei natürlich stets standhalten. Alle Kreuzungen des Bahnkörpers sind als Brücken oder Unterführungen auszuführen; in manchen Ländern werden Schnellfahrtrassen auch eingezäunt. Weite Tunnelmündungen, Tunnels in Zweiröhrenbauweise und oft auch vergrößerte Gleismittenabstände sollen die Druckstöße beim Einfahren in Tunnels und bei Zugbegegnungen bewältigen helfen.

Äußerst schwer ausgeführter Schotteroberbau hat sich dabei über Jahrzehnte bewährt. In jüngster Zeit geht man zumindest in Deutschland zum Bau von Schnellfahrstrecken mit fester Fahrbahn über, wo kein Schotter-Schwellen-System, sondern eine Betonfahrbahn mit Dämpfungselementen die Schienen trägt. Dies spart Wartungskosten für Schwellen und Schotter. Auch wird das Risiko, das durch die Aufwirbelung von durch die Belastungen zerkleinertem Schotter entsteht, verringert.

Zur Schnellfahrstrecke gehört auch die entsprechende Schnellfahr-Oberleitung. Es werden Fahrdrähte aus einer speziellen Legierung benutzt, die den elektrischen Kontakt verbessert und Funkenflug vermeidet. Die Fahrleitung wird besonders stark abgespannt, um Schwingungen zu dämpfen und die Fahrdrahthebung zu minimieren. Normalerweise müssen auf Schnellfahrstrecken auch größere Oberströme möglich sein als auf normalen elektrifizierten Strecken, wozu die Speiseleitungen und Unterwerke entsprechend ausgelegt sein müssen.

Linienförmige Zugbeeinflussung

Bei den langen Betriebs- (ca. 7000 m) und Schnellbremswegen (über 3000 m) moderner Hochgeschwindigkeitszüge ist das traditionelle Signalsystem zur Zugdeckung nicht mehr tauglich, da die Blockabstände und Durchrutschwege immens lang sein müssten. Andererseits ist auf Schnellfahrstrecken oft eine extrem kurze Zugfolge gefordert.

Ausweg aus dem Dilemma ist es, die Züge nicht punktuell an der Strecke durch Aufforderungen zum Halten oder Langsamfahren zu beeinflussen, sondern ständigen Kontakt mit ihnen zu halten. Üblicherweise werden hierzu Linienleiter entlang der Strecke benutzt, die auf eine Zugantenne einwirken, und somit eine Art Drahtfunkverbindung zwischen dem Zug und einer Leitstelle errichtet.

Übertragen werden z.B. Ort und Art von bevorstehenden Geschwindigkeitsänderungen ("in 10 km anhalten"; "in 2400 m auf 230 km/h abbremsen"). Die Position der Zugantenne am Linienleiter dient der Zugortung. Auch dabei gibt es heute generell noch feste Blockabschnitte.

Als angenehmer Nebeneffekt verhindert die linienförmige Zugbeeinflussung abrupte Bremsmanöver und das für die Fahrgäste unangenehme Halten in stark überhöhten Kurven.

Geschichte

Schnellfahrversuche mit Dampf- und Elektrolokomotiven hatten schon vor dem ersten Weltkrieg gezeigt, dass Geschwindigkeiten nahe oder sogar über 200 km/h bewältigbar sind - und dies zu einer Zeit, da die schnellsten fahrplanmäßigen Züge selten mit über 100 km/h unterwegs waren.

Ein erster planmäßiger Schnellverkehr war das in Deutschland von 1933 bis 1939 entstehende Netz von Fernschnelltriebwagen-Verbindungen (siehe auch Fliegender Hamburger). Das Netz der „fliegenden Züge“ bestand vor allem aus Strecken von Berlin ausgehend, um Geschäfts- und Dienstreisenden die Möglichkeit der Tagesreise nach Berlin zu ermöglichen. Die Fahrzeiten wie z.B. von Berlin nach Köln in 4:44 Stunden oder nach München in 6:39 Stunden bzw. von Hamburg nach Dresden in 5:12 Stunden waren, trotz maximalen Geschwindigkeiten von nur 160 km/h, kaum länger als heute auf den extra erbauten Schnellfahrstrecken. Dabei betrugen die durchschnittlichen Reisegeschwindigkeiten zwischen Berlin und Hannover, Hannover und Hamm oder Leipzig und Berlin schon über 130 km/h, genauso schnell wie heute. 1939, vor der Einstellung des Verkehrs, gab es 36 tägliche Zugverbindungen mit über zurückgelegten 18000 km.

Zum Mutterland des modernen Hochgeschwindigkeitsverkehrs wurde Japan, wo in den 1960er Jahren die Shinkansen-Züge auf extra neuen Hochgeschwindigkeitstrassen in engem Takt zu verkehren begannen.

In der restlichen Welt vergingen noch fast zwei Jahrzehnte, in denen man sich mehr oder weniger fruchtlos mit Einschienenbahnen, Magnetschwebebahnen, Luftkissenschwebebahnen, Kabinenbahnen und anderen "Science-Fiction"-Transportsystemen beschäftigte und ansonsten Autobahnen baute, bis erkannt wurde, dass Hochgeschwindigkeitsverkehr durchaus sinnvoll sein könnte, und die Trassen zudem für die Landesverteidigung genutzt werden können.

Zum Aufbruch in eine neue Ära wurde der Start des TGV 1981. Zu diesem Zeitpunkt war auch in Deutschland, wo es bereits seit 1971 planmäßige InterCity-Züge mit 200 km/h Spitzengeschwindigkeit gab, die erste regelrechte Schnellfahrstrecke Hannover-Würzburg in Bau. 1991 nahm der ICE den Betrieb auf.

Heute fahren Dutzende verschiedener Typen von Hochgeschwindigkeitszügen auf der ganzen Welt auf Tausenden von Kilometern an Schnellfahrstrecke. Die Zeichen stehen auch über 35 Jahre nach Beginn der Geschichte der schnellen Züge immer noch auf fast ungebremster Expansion; in fast allen entwickelten Ländern und zahlreichen Schwellenstaaten gibt es zur Zeit Streckeneubauten, -ausbauten oder Planungen dafür.

Zukunft

Die Zukunft des Hochgeschwindigkeitsverkehrs ist einerseits geprägt durch einen Boom von Neubau- und Ausbaustrecken (dies scheint unter anderem den USA eine Renaissance des Schienenpersonenfernverkehrs einzutragen), andererseits durch das Bemühen, größere Teile des Netzes schneller zu befahren, ohne notwendigerweise Strecken komplett neu oder umzubauen. Auch der Trend zur Geschwindigkeitssteigerung scheint sich verlangsamt fortzusetzen; Losraddrehgestelle mit Innenfederung, also keinerlei ungefederter Masse außer den Rädern, sind im Gespräch, mit denen sich Geschwindigkeiten um 400 km/h, die bisher nur bei Rekordversuchen erreicht wurden, im Planbetrieb sicher fahren ließen.

Die Zukunft in der Fahrzeugtechnik ist jedenfalls die aktive Regelung. Aktiv geregelte Stromabnehmer sollen höhere Geschwindigkeiten auch auf Strecken ohne Schnellfahroberleitung ermöglichen, aktiv gelenkte Drehgestelle die Belastungen für Rollmaterial und Oberbau senken; das gleiche Ziel haben aktiv gesteuerte Schlingerdämpfer. Im weitesten Sinne kann man auch die Neigetechnik hierunter zählen.

Die erwähnte Entwicklung in den USA versucht ebenfalls, mit möglichst geringen Investitionen auszukommen, also wenn möglich ganz ohne Elektrifizierung. Unter anderem ist hierzu der Einsatz von gasturbinenbetriebenen Zügen geplant. Entsprechende Versuche sind schon früher gescheitert; man darf hier also skeptisch sein.

Zunehmend mehrsystemfähige Züge auf einem zunehmend integrierten europäischen Schnellfahrnetz sind die Zukunft Europas. Ein integriertes Zugbeeinflussungssystem, das ETCS, mag hier auch endlich das Fahren im Blockabstand durch das Fahren im Bremswegabstand ersetzen und damit die Streckenkapazitäten unübersehbar steigern.




     
Das Web Lexikon "Ein Blick zurück" bietet die Moeglichkeit auf einfache Art und Weise in den "alten" Wikipedia-Beiträgen zu blättern. Das Lexikon spiegelt den Stand der freien Wikipedia-Enzyklopädie vom August 2004 wider. Sie finden hier in rund 120.000 Artikel aus dieser Zeit Informationen, Erklärungen, Definitionen, Empfehlungen, Beschreibungen, Auskünfte und Bilder. Ebenso kommen Begriffserklärung, Zusammenfassung, Theorie, Information, Beschreibung, Erklärung, Definition und Geschichte nicht zu kurz. Ein Lexikon das Auskunft, Bericht, Hinweis, Bedeutung, Bild, Aufklärung, Darstellung und Schilderung zu unterschiedlichsten Themen kompakt auf einer Seite bietet.
Impressum ^ nach oben ^