WEB LEXIKON: Ein Blick zurück
Hauptseite | Aktueller Wikipedia-Artikel

Vermutung von Birch und Swinnerton-Dyer



Die Vermutung von Birch und Swinnerton-Dyer ist eines der wichtigsten ungelösten Probleme der modernen Mathematik. Sie sagt etwas aus über den Rang elliptischer Kurven (das sind solche, die durch Gleichungen dritten Grades dargestellt werden). Auf diesen Kurven kann man beliebige Punkte wählen und miteinander addieren, sodass das Ergebnis wiederum ein Punkt der Kurve ist. Wenn man das mit einem Ausgangspunkt P0 macht, erhält man eine Folge von Punkten: und so weiter.

Nun können zwei Fälle eintreten:

  1. Man bewegt sich in einem Kreis, d.h. irgendein Pn ist wieder identisch dem Anfangspunkt
  2. Man kommt immer fort zu immer neuen Punkten, die alle auf der Kurve liegen.
Im zweiten Fall stellt sich die Frage, wieviele Startpunkte P0 notwendig sind, um letztendlich die elliptische Kurve in ihrer Gesamtheit mit Punkten abgedeckt zu haben. Die Anzahl dieser Startpunkte wird als "Rang" der Kurve bezeichnt.

Die Vermutung von Birch und Swinnerton-Dyer gibt ein Verfahren an, wie man aus der Gleichung der elliptischen Kurve deren Rang bestimmen kann. Dieses Verfahren wartet aber noch auf eine mathematische Beweisführung.

Der Beweis der Vermutung von Birch und Swinnerton-Dyer wurde vom Clay Mathematics Institut in ihre Millenium Prize Problems aufgenommen.




     
Das Web Lexikon "Ein Blick zurück" bietet die Moeglichkeit auf einfache Art und Weise in den "alten" Wikipedia-Beiträgen zu blättern. Das Lexikon spiegelt den Stand der freien Wikipedia-Enzyklopädie vom August 2004 wider. Sie finden hier in rund 120.000 Artikel aus dieser Zeit Informationen, Erklärungen, Definitionen, Empfehlungen, Beschreibungen, Auskünfte und Bilder. Ebenso kommen Begriffserklärung, Zusammenfassung, Theorie, Information, Beschreibung, Erklärung, Definition und Geschichte nicht zu kurz. Ein Lexikon das Auskunft, Bericht, Hinweis, Bedeutung, Bild, Aufklärung, Darstellung und Schilderung zu unterschiedlichsten Themen kompakt auf einer Seite bietet.
Impressum ^ nach oben ^