WEB LEXIKON: Ein Blick zurück
Hauptseite | Aktueller Wikipedia-Artikel

Variationsrechnung



Die Variationsrechnung ist eine Sparte der Mathematik, die um 1800 von Lagrange entwickelt wurde. Sie beschäftigt sich mit Funktionenen von Funktionen, die auch Funktionale genannt werden. Solche Funktionale können z.B. Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionen, also solche, für die das Funktional ein Maximum, Minimum oder Sattelpunkt annimmt. Einige klassiche Probleme wurden mit Hilfe von Funktionalen formuliert.

Ein Beispiel ist das Brachystochronenproblem: Auf welcher Kurve in einem Schwerefeld von einem Punkt A zu einem Punkt B, der unterhalb, aber nicht direkt unter A liegt, benötigt ein Objekt die geringste Zeit zum Durchlaufen der Kurve? Von allen Kurven zwischen A und B minimiert eine den Ausdruck, der die Zeit des Durchlaufens der Kurve beschreibt. Dieser Ausdruck ist ein Integral, das die unbekannte, gesuchte Funktion, die die Kurve von A nach B beschreibt, und deren Ableitungen enthält.

Das Schlüsseltheorem der Variationsrechnung ist die Euler-Lagrange-Gleichung. Sie beschreibt die Stationaritätsbedingung eines Funktionals. Wie bei der Aufgabe, die Maxima und Minima einer Funktion zu bestimmen, wird sie aus der Analyse kleiner Änderungen um die angenommene Lösung hergeleitet.

Die Variationsrechnung ist besonders in der theoretischen Physik wichtig, so z.B. im Lagrange-Formalismus der klassischen Mechanik bzw. der Bahnbestimmung, und in der Quantenmechanik in Anwendung des Prinzips der kleinsten Wirkung. In der Mathematik wurde die Variationsrechnung z.B. bei Bernhard Riemanns Behandlung des Dirichlet-Prinzips für harmonische Funktionen verwendet.

In der modernen Mathematik wird die Variationsrechnung nicht mehr in großem Umfang angewendet. Ihre Methoden tauchen bei den Hilbertraum-Techniken, der Morse-Theorie und bei der symplektischen Geometrie wieder auf. Der Begriff Variation wird für alle Extremal-Probleme von Funktionen verwendet. Geodäsie und Differentialgeometrie sind Bereiche der Mathematik, in denen Variationen eine Rolle spielen. Besonders am Problem der minimalen Oberflächen, die z.B. bei Seifenblasen auftreten, wurde viel gearbeitet.

Siehe auch

Kurvendiskussion, Variation der Elemente




     
Das Web Lexikon "Ein Blick zurück" bietet die Moeglichkeit auf einfache Art und Weise in den "alten" Wikipedia-Beiträgen zu blättern. Das Lexikon spiegelt den Stand der freien Wikipedia-Enzyklopädie vom August 2004 wider. Sie finden hier in rund 120.000 Artikel aus dieser Zeit Informationen, Erklärungen, Definitionen, Empfehlungen, Beschreibungen, Auskünfte und Bilder. Ebenso kommen Begriffserklärung, Zusammenfassung, Theorie, Information, Beschreibung, Erklärung, Definition und Geschichte nicht zu kurz. Ein Lexikon das Auskunft, Bericht, Hinweis, Bedeutung, Bild, Aufklärung, Darstellung und Schilderung zu unterschiedlichsten Themen kompakt auf einer Seite bietet.
Impressum ^ nach oben ^