WEB LEXIKON: Ein Blick zurück
Hauptseite | Aktueller Wikipedia-Artikel

Magnetar



Ein Magnetar ist ein Neutronenstern, dessen Magnetfeld das 1.000fache des bei Neutronensternen üblichen Wertes aufweist. Man schätzt, dass etwa 10% aller Neutronensterne zu dieser Sternklasse zählen. Die Theorie der Magnetare wurde von Robert Duncan und Christopher Thompson entwickelt.

Entstehung

Neutronensterne entstehen beim Kollaps von Sternen einer bestimmten Gewichtsklasse im Rahmen einer Supernova. Sie haben einen typischen Durchmesser von lediglich etwa 20 km und ein extrem starkes Magnetfeld der Größenordnung 1012 Gauß (108 Tesla). Diese Feldstärke ergibt sich als Folge der Gesetze der Elektrodynamik, wonach das Produkt aus Sternquerschnitt und Magnetfeld beim Kollaps des Vorläufersterns konstant bleibt.

Aufgrund des Pirouetteneffektes rotieren Neutronensterne unmittelbar nach dem Kollaps mit Rotationsperioden im Millisekundenbereich. Ein Magnetar entsteht nun dann, wenn die Rotationsperiode unter 10 ms liegt und der Vorläuferstern ein relativ starkes Magnetfeld besaß. Andersfalls entsteht ein gewöhnlicher Neutronenstern bzw. Pulsar. Die Ursache sind Konvektionszonen in der ultradichten Neutronenmaterie, die unmittelbar nach dem Kollaps mit Rotationsperioden von 10 ms rotieren. Rotiert der Gesamtstern schneller, so setzt ein Dynamoeffekt ein, der die enorme kinetische Energie der Konvektionswirbel innerhalb von etwa 10 s in Magnetfeldenergie umwandelt.

Dabei entsteht ein Magnetfeld, dass mit 1015 Gauß tausend mal stärker ist, als das eines gewöhnlichen Neutronensterns. Die Massendichte, die einem derartigen Magnetfeld über seine Energiedichte in Kombination mit der Äquivalenz von Masse und Energie gemäß E=mc2 zugeordnet werden kann, liegt im Bereich einiger Dutzend kg/mm3. Ein solches Magnetfeld ist so stark, dass es die Struktur des Quantenvakuums verändert, so dass der materiefreie Raum doppeltbrechend wird.

Ist die Achse des Magnetfeldes gegen die Rotationsachse geneigt, so wird eine periodische Radiowelle mit einer typischen Leistung im Bereich des 108fachen der gesamten Strahlungsleitung der Sonne abgestrahlt. Die dazu erforderliche Energie wird der Rotationsenergie entnommen, die dadurch innerhalb von 10.000 Jahren weitgehend aufgezehrt wird. Die Rotationsperiode beträgt dann mehrere Sekunden. Gewöhnliche Pulsare werden erheblich weniger gebremst und rotieren daher deutlich schneller.

Strahlungsausbrüche

Man kennt rund ein Dutzend Röntgenquellen in unserer Milchstrasse, die als Kandidaten für Magnetare angesehen werden. Diese Objekte erleiden in unregelmäßigen Abständen Gamma- und Röntgen-Ausbrüche mit einer Dauer von wenigen Zehntel Sekunden. In dieser kurzen Zeit wird typischerweise soviel hochenergetische Strahlungsenergie freigesetzt, wie die Sonne in etwa 10.000 Jahren im gesamten Spektrum abstrahlt. Diesem kurzen und extremen Strahlungspuls folgt eine mehrminütige Relaxationsphase, in der die Strahlung abnimmt und dabei periodische Schwankungen im Bereich von mehrere Sekunden aufweist, der Rotationsperiode des Magnetars.

Diesen großen Ausbrüchen folgen in den Stunden bis Jahren danach meist weitere kleinere. Man nennt diese Strahlungsquellen daher auch Soft Gamma Repeater (SGR). Eine statistische Analyse dieser Ausbrüche zeigt eine auffällige Verwandtschaft mit der von Erdbeben. In der Tat nimmt man an, dass es sich dabei um Brüche in der äußeren Kruste des Magnetars handelt, die wie bei allen Neutronensternen aus einem Plasma von Elektronen und kristallin angeordneten Eisen- und anderen Atomkernen besteht. Als Ursache werden Kräfte des Magnetfeldes angesehen, die auf diese feste Kruste einwirken.

Die größeren Ausbrüche führt man auf großräumige Umordnungsprozesse eines instabil gewordenen Magnetfeldes zurück, wie sie sich qualitativ ähnlich auch auf der Sonnenoberfläche ereignen und dort die so genannten Flares erzeugen. Danach würde die beobachtete hochenergetische Strahlung von einem Feuerball aus heißem Plasma auf der Oberfläche des Magnetars ausgesandt, der für einige Zehntel Sekunden durch das starke Magnetfeld lokal gebunden ist, was Feldstärken über 1014 Gauß erfordert. Die Intensität der ausgesandten Strahlung wird auch damit in Verbindung gebracht, dass die Strahlung diesen Feuerball ungehindert durchdringen kann, da das starke Magnetfeld die freien Elektronen daran hindert, mit der elektromagnetischen Welle zu schwingen.

Man geht davon aus, dass Magnetare nur in den ersten 10.000 Jahren nach ihrer Entstehung solche Ausbrüche erleiden und danach ihre Magnetfelder stabilisiert haben. Der immer noch heiße Neutronenstern strahlt noch einige 1.000 Jahre weiter als so genannter anomaler Röntgen-Pulsar (anomalous X-ray pulsar, AXP), bis seine Temperatur dafür nicht mehr ausreicht. Möglicherweise beherbergt die Milchstraße mehrere Millionen solcher unauffälliger Magnetare.

Derzeit (2003) sind vier Soft Gamma Repeater und sechs anomale Röntgen-Pulsare bekannt.

Literatur

C. Kouvelotou, R. C. Duncan, C. Thompson: Magnetare, Spektrum der Wissenschaft, Mai 2003, S. 56-63

Weblinks




     
Das Web Lexikon "Ein Blick zurück" bietet die Moeglichkeit auf einfache Art und Weise in den "alten" Wikipedia-Beiträgen zu blättern. Das Lexikon spiegelt den Stand der freien Wikipedia-Enzyklopädie vom August 2004 wider. Sie finden hier in rund 120.000 Artikel aus dieser Zeit Informationen, Erklärungen, Definitionen, Empfehlungen, Beschreibungen, Auskünfte und Bilder. Ebenso kommen Begriffserklärung, Zusammenfassung, Theorie, Information, Beschreibung, Erklärung, Definition und Geschichte nicht zu kurz. Ein Lexikon das Auskunft, Bericht, Hinweis, Bedeutung, Bild, Aufklärung, Darstellung und Schilderung zu unterschiedlichsten Themen kompakt auf einer Seite bietet.
Impressum ^ nach oben ^