WEB LEXIKON: Ein Blick zurück
Hauptseite | Aktueller Wikipedia-Artikel

Lineare Algebra



Lineare Algebra ist der Zweig der Mathematik, der sich mit Vektorenen, Vektorräumen, linearen Abbildungen und linearen Gleichungssystemen befasst. Da der Vektorraum ein wichtiges Hilfsmittel in vielen Bereichen der Mathematik ist, gilt die lineare Algebra als eine der Grundlagen der Mathematik. Außerhalb der reinen Mathematik finden sich Anwendungen der linearen Algebra u.a. in den Naturwissenschaften und in der Wirtschaftswissenschaft (Optimierung).

Der Ursprung der linearen Algebra findet sich in systematischen Betrachtungen von Vektoren im 2- und 3-dimensionalen (euklidischen) Raum, auch "Anschauungsraum" genannt. Hier entspricht einem Vektor eine Strecke einer bestimmten Länge (der Betrag des Vektors) sowie eine der zwei möglichen Richtungen. Vektoren dieser Art lassen sich nutzen, um physikalische Größen (etwa Kräfte) anschaulich darzustellen. Die Multiplikation eines Vektors mit einer Zahl sowie das Addieren von Vektoren bilden die Rechenoperationen in einem aus Vektoren gebildeten Vektorraum.

Die Verallgemeinerung zu mehrdimensionalen (abstrakten) Vektorräumen, obwohl unanschaulich, ist wesentlicher Bestandteil der linearen Algebra. Hier werden der mathematische Ring aller linearen Abbildungen, die als Matrizen darstellbar sind, wichtige Hilfsmittel. Ein Vektorraum ist nur dann vollständig charakterisiert, wenn der Zahlenkörper, über dem der Vektorraum definiert ist, angegeben ist. Typische Zahlenkörper sind die reellen oder komplexen Zahlen.

Wichtige Begriffe der Linearen Algebra, die besser unter Vektorraum beschrieben werden, sind die Basis eines Vektorraums, die Eigenschaften linearer Abbildungen und von Determinanten sowie das Skalarprodukt.

Beispiele wichtiger Vektorräume sind der Banachraum und der Hilbertraum.

Table of contents
1 Schreibweise
2 Rechenregeln
3 Lineare Gleichungssysteme
4 Rechenverfahren
5 Literatur

Schreibweise

Vektoren können durch ihre Komponenten beschrieben werden, die (je nach Anwendung) als (hier 3-dimensionaler) Spaltenvektor

oder (hier 4-dimensionaler) Zeilenvektor
geschrieben werden.

In der Literatur werden Vektoren unterschiedlich von anderen Größen unterschieden: Es werden Kleinbuchstaben, fettgedruckte Kleinbuchstaben, unterstrichene Kleinbuchstaben oder Kleinbuchstaben mit einem Pfeil darüber benutzt. Dieser Artikel verwendet Kleinbuchstaben.

Eine Matrix wird durch ein 'Raster' von Zahlen angegeben. Hier ist eine 2-dimensionale Matrix (mit 4 Zeilen und 3 Spalten):

Matrizen werden meistens mit Großbuchstaben bezeichnet.

Einzelne Elemente eines Vektors werden bei Spaltenvektoren in der Regel durch einen Index angegeben: Das 2. Element des oben angegebenen Vektors a wäre dann a2=7. In Zeilenvektoren wird manchmal eine Hochzahl verwendet, wobei man aufpassen muss, ob eine Vektorindizierung oder ein Exponent vorliegt: Mit dem obigen Beispiel b hat man etwa b4=7.

Matrixelemente werden durch zwei Indizes angegeben. Dabei werden die Elemente durch Kleinbuchstaben dargestellt: m2,3=2 ist das Element der 2. Zeile in der 3. Spalte.

Rechenregeln

Sowohl Vektoren als auch Matrizen werden elementweise addiert:

Die Multiplikation mit einer Zahl (Skalarmultiplikation, skalare Multiplikation) erfolgt durch Multiplikation jedes Vektor- oder Matrixelementes mit der Zahl.

Damit eine Multiplikation zweier Matrizen definiert werden kann, muss die Anzahl der Spalten der 'linken' Matrix gleich der Anzahl der Zeilen der 'rechten' Matrix sein. Die anschauliche Merkregel zur Matrixmultiplikation beispielsweise zweier Matrizen zu C = A * B ist, dass man ein Element ci,j der Matrix C aus dem Produkt der i-ten Zeile der Matrix A mit der j-ten Spalte der Matrix B erhält. Nach den oben genannten Bedingungen ist sichergestellt, dass eine Zeile in A genausoviele Elemente wie eine Spalte in B enthält. Dann kann man das Produkt von Zeile mit Spalte als die Summe der paarweisen Produkte (erstes Element der Zeile * erstes Element der Spalte + ... + letztes Element der Zeile * letztes Element der Spalte) definieren. Da man formal einen Vektor als eine Matrix mit einer Zeile oder einer Spalte auffassen kann, fallen Multiplikationen zwischen Matrix und Vektor ebenfalls unter diese Vorschrift.

Formal definiert man die Matrixmultiplikaton C = A * B durch

Lineare Gleichungssysteme

Eine wichtige Anwendung der Linearen Algebra ist das Lösen linearer Gleichungssysteme. Beispielsweise kann man das lineare Gleichungssystem,

für das die Lösungswerte für \x1, x2 und x3 berechnet werden sollen, in eine Matrix- und Vektorgleichung A * x = b umformen:

Rechenverfahren

Der Gauß-Algorithmus ist ein Standardverfahren zum Lösen linearer Gleichungssysteme.

Die Cramersche Regel zur Lösung von linearen Gleichungssystemen.

Das Gram-Schmidt-Orthonormalisierungsverfahren zur Konstruktion von Orthonormalbasen

Literatur




     
Das Web Lexikon "Ein Blick zurück" bietet die Moeglichkeit auf einfache Art und Weise in den "alten" Wikipedia-Beiträgen zu blättern. Das Lexikon spiegelt den Stand der freien Wikipedia-Enzyklopädie vom August 2004 wider. Sie finden hier in rund 120.000 Artikel aus dieser Zeit Informationen, Erklärungen, Definitionen, Empfehlungen, Beschreibungen, Auskünfte und Bilder. Ebenso kommen Begriffserklärung, Zusammenfassung, Theorie, Information, Beschreibung, Erklärung, Definition und Geschichte nicht zu kurz. Ein Lexikon das Auskunft, Bericht, Hinweis, Bedeutung, Bild, Aufklärung, Darstellung und Schilderung zu unterschiedlichsten Themen kompakt auf einer Seite bietet.
Impressum ^ nach oben ^